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ABSTRACT 

Half-factoriality is a central concept in the theory of non-unique factoriza- 

tion, with applications for instance in algebraic number theory. A subset 

Go of an abelian group is called half-factorial if the block monoid over 

Go, which is the monoid of all zero-sum sequences of elements of Go, is 

a half-factorial monoid. In this paper we study half-factorial sets with 

large cardinality in elementary p-groups. First, we determine the maxi- 

mal cardinality of such half-factorial sets, and generalize a result which 
has been only known for groups of even rank. Second, we characterize the 
structure of all half-factorial sets with large cardinality (in a sense made 
precise in the paper). Both results have a direct application in the study 
of some counting functions related to factorization properties of algebraic 
integers. 
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1. In t roduc t ion  and main  resul ts  

A monoid (a commutative, cancellative semigroup with unit element) is called 

a tomic  if each non-unit a E H has a factorization a = u l  • . . .  • U k  with a toms  

(i.e. irreducible elements) u~ E H. The integer k is called the length of the 

factorization. An atomic monoid is called half-factorial if for each non-unit 

a E H the lengths of any two factorizations of a into atoms are equal. Clearly, 

a domain is half-factorial (respectively, atomic) if and only if its multiplicative 

monoid is half-factorial (respectively, atomic). 

Half-factoriality is a central topic in the theory of non-unique factorization 

(cf. e.g. [4, 33, 36, 37, 25, 7, 2, 3, 24] and [5] for a survey). If H is a Krull monoid 

(cf. e.g. Chapters 22 and 23 in [21]), for example the multiplicative monoid of 

a Krull or a Dedekind domain, then whether H is half-factorial, and sets of 

lengths of factorizations in general, just depend on the class group G of H and 

the subset Go C G of classes containing prime divisors (cf. [12, Proposition 1]), 

namely H is half-factorial if and only if Go C G is a half-factorial set. 

Let G be an abelian group, additively written, and Go C G. Let 9V(G0) be 

the free abelian monoid, multiplicatively written, generated by Go (equivalently, 
l the set of all multi-sets in Go). An element I-[~=1 gi E 5~(G0) with g~ C Go is 

i called a zero-sum sequence  (or, a block) if ~i=1 gi = 0. The block monoid 

B(Go) C •(Go) is the submonoid of all zero-sum sequences in Go. It is an 

atomic monoid (even a Krull monoid) and its atoms are the minimal zero-sum 

sequences, the set of which is denoted by A ( G o ) .  The notion of block monoids 

was introduced by W. Narkiewicz in [27] and is meanwhile a main tool in the 

theory of non-unique factorization (cf. [1], in particular the surveys [6, 20]). 

We shall say that the set Go is half-factorlal  if the block monoid/~(G0) is a 

half-factorial monoid. 

A realization result of L. Claborn [8] states that every abelian group is iso- 

morphic to the class group of some Dedekind domain (see also the book [9]). 

Furthermore, if G is an abelian group and Go C G a generating (as a semigroup) 

subset, then there exists a Krull monoid (even a Dedekind domain) with class 

group isomorphic to G such that Go corresponds to the set of classes containing 

prime divisors (cf. [18, 33, 19]). Thus to investigate half-factoriality for Krull 

monoids is equivalent to investigate half-factorial subsets of abelian groups ([10, 

15, 22] are recent articles where this point of view is emphasized). 

Apart from their importance in the investigation of half-factorial monoids, 

results on half-factorial sets can be applied when investigating other problems of 

non-unique factorization. For example, they are used to investigate differences 
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occurring in sets of lengths that  are long arithmetical progressions, namely 

results on half-factorial sets can be used to obtain results on the so-called A1 (G) 

set (cf. [13, 11]). 

Another reason for the investigation of half-factorial sets and a main reason 

for introducing the notion of block monoids is the fact that  half-factorial sets 

and related quantities occur when investigating the asymptotic behaviour of 

a certain counting function, Gk(x),  defined via factorization properties of al- 

gebraic integers (cf. below for a definition, some results and references). The 

investigation of this counting function was initiated by W. Narkiewicz and the 

following constant was introduced in [34] in this context: For G a finite abelian 

group, define 

#(G) = max{[Go[I Go C G half-factorial}. 

The problem to determine #(G) for arbitrary finite abelian groups is wide open 

and is open even for cyclic groups (cf. [22] for recent results). Yet, in [17, 

Theorem 8] A. Geroldinger and J. Kaczorowski could prove that the following 

chain of inequalities is valid for any elementary p-group G of rank r: 

/ ! r / r r 

As a consequence, they obtained the exact value of it(G) when G is an ele- 

mentary p-group of even rank, since the lower and the upper bounds in (t) 

coincide. 

In this paper, starting from inequality (t), we first determine it(G) when G 

is an arbitrary elementary p-group. 

THEOREM 1.1: Let G be an elementary p-group of rank r. Then, 

r--1 i f r  is odd, 
i t(G) = 2 + --¢-p 

1 +  2 ~-p if  r is even. 

In particular, this theorem shows that,  in (t), equality always holds at the 

lower bound. This was up to now only known for G of even rank and in some 

special cases (cf. below). 

A second aim of this paper is to provide, again in the case where G is an ele- 

mentary p-group, a structural result on half-factorial sets Go C G for which [Go[ 

is sufficiently close to it(G) (half-factorial sets with "large" cardinality). This 

result generalizes a result on the structure of half-factorial sets with maximal 

cardinality (that is, [Go[ = #(G)) in elementary p-groups of even rank obtained 

in [31, Theorem 3.1]. We shall prove the following theorem. 
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THEOREM 1.2: There exists an absolute constant c > 0 such that for any 

elementary p-group G of rank r, if Go C G is a half-factorial subset with [Go[ > 

#(G) - cp, then there exists a basis {el , . . .  ,er} C G, such that 

[~/2J 
Go C U {je2i-1 + (p + 1 - j)e2~l j • [1,p]} u {er, 0}. 

i=1 

In particular, if p(G) = ]Goh then 

trf2l 
Go = U {je2i-, + (p+ 1 -j)e2il j • [1,p]} U {er,0}. 

i=1 

If we denote by c0(p, r) the supremum of the values c for which Theorem 1.2 

is valid, then our proof will show that 

co(p, ) > 1/12 

for all p and r. In Section 5, following the proof of this result, we will discuss 

possibilities to improve this bound. 

For p _< 7 the structure of all half-factorial subsets of elementary p-groups is 

already known (cf. [27, Problem II] for p = 2 and [31, Section 6]). In particular, 

the statement of Theorem 1.1 for p _< 7 is just [31, Theorem 3.2.2] and Theorem 

1.2 for p <_ 7 follows immediately from the structural characterization of half- 

factorial sets in [27, 31]. Thus we could assume p _> 11. However, to unify the 

argument and since it makes it neither longer nor more complicated, we will 

provide the argument for p < 7 as well. 

Both results (Theorems 1.1 and 1.2) have a direct application to the investiga- 

tion of the counting function Gk (x). We recall some definitions and results: Let 

H be an atomic monoid and k some positive integer. Then the set Gk (H) C H 

is defined as the set of elements of H with factorizations into atoms of at most k 

different lengths. Let K be an algebraic number field with class group G and R 

its ring of integers. Further, let 7-/(R) denote the monoid of non-zero principal 

ideals of R, which is an atomic monoid. It is a well known result (cf. [4]) that R 

is half-factorial if and only if IGI <_ 2. Suppose IG I _> 3. The counting function 

is defined as 

Gk(x) = [{I[ Af(I) _< x and I • gk(7-/(R))}l, 

i.e. Gk (x) counts the (non-associated) elements of R with factorizations of at 

most k different lengths. The investigations on Gk(x) have been started in [26] 

and have been continued (respectively generalized to more general settings) by 

various authors (cf. e.g. [34, 23, 13, 17, 16, 29]). 
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In order to investigate Gk (x) one considers a main term, Mk (x). For x _> 1 

let 

1 ((s, Ca) --ds ,  Mk(x)  = ~ s 

where ((s, 6k) is defined via ((s, 6k) = ~'~le~k(n(R))Af(I) -s for N(s) > 1 and 

analytic continuation, and the contour of integration C goes counterclockwise 

around the points 1/2 and 1 (cf. [28, 29] and [23] for a similar definition). 

For the investigation of the main term as well as for the investigation of the 

error term Rk (x) = Gk (x) --Mk (x) half-factorial sets with maximal cardinality 

and related combinatorial problems play an important role. 

In particular it is known, in the present form obtained in [13], that 

Gk (x) ", Ck x(log x) -l+~(G)/l~] (log log x) Ck (G) 

for some constant Ck, and where ~bk (G) is a non-negative integer that depends 

on the structure of half-factorial sets with cardinality #(G). Roughly, Ck (G) is 

equal to the number of elements one can add to a sequence in a half-factorial 

set with maximal cardinality without obtaining a zero-sum sequence having 

factorizations of more than k different lengths, i.e. is not an element of ~k (B(G)). 

More precisely, Ck (G) is defined as the maximal length of a sequence S such 

that the following holds: There exists some half-factorial set Go C G with 

IG01 = #(G) such that S E ~'(G \ Go) and ~ ¢ S .  f (Go)  N B(G) C ~k(B(G)). 

In view of this definition, results on the structure of half-factorial subsets with 

maximal cardinality of G seem to be necessary in order to evaluate Ck (G). It 

might be interesting to note that using such results, in particular the known 

special case for even rank of Theorem 1.2, Ck(G) has been determined for some 

types of groups and values of k (cf. [32]). 

As mentioned above, problems related to half-factorial sets with maximal 

cardinality also occur in investigations of the error term Rk (x). In [29, Theorem 

5] it is proved that if Ck (G) > 0, then the error term is subject to oscillations of 
positive lower logarithmic frequency and size x 1/2-e. Moreover, it is conjectured 

there that Ck (G) > 0 for every finite abelian group G and positive integer k. In 

[30] this conjecture is proved for k >_ 2 and arbitrary G, and some results related 

to the positivity of ¢1 (G) are proved. One of these results ([30, Theorem 7.1]) 

and Theorem 1.1 now implies the conjecture in the case where G is an elementary 

p-group. Thus, all this yields the following: 

COROLLARY 1.3: Let K be an algebraic number field and k a positive integer. If  

the ideal class group of K is an elementary p-group with at least three elements, 
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then the error term Rk (x) is subject to oscillations of positive lower logarithmic 
frequency and size X 1 / 2 - e  . 

The paper is organized as follows: In Section 2 we fix notations and recall 

some known results. In Section 3 we develop the tools for the proofs of our 

results, in particular Lemma 3.3 and Proposition 3.4. In Section 4 we prove 

several preparatory results. Finally, in Section 5, the proofs of Theorem 1.1 and 

Theorem 1.2 are given. These are simple consequences of the preceding results. 

For the sake of completeness and clarity, we have tried to make the present 

article as self-contained as possible. Hopefully, this approach will draw a unified 

picture of what is now known in the case of elementary p-groups. 

2. Pre l iminar ies  

We denote by Q the set of rational numbers and by Z the set of integers. 

Throughout, p will always denote a prime number and we shall denote by Fp the 

field with p elements. For r,s E Q let [r,s] = {z E Z I r < z < s} C Z. It will he 

necessary to treat integers, and their multiplicative inverses and representatives 

modulo p in the same equation. To this end we use the following notation: For 

a prime p and x E Z or x E Fp we denote by [X]p its representative modulo p in 

[0 ,p-  1]. For x E Z with p { x we denote by x -1 its multiplicative inverse in Fp 

(although the notation x -1 does not indicate with respect to which prime the 

inverse is taken, the context will always make this clear). 

Elementary p-groups are in a natural way vector spaces over Fp. Thus we 

make use of the notions of basis and dimension. However, to he consistent 

with the usual terminology for groups we will refer to the Fp-dimension of some 

elementary p-group G as the rank of G and denote it by r(G). If G is an 

elementary p-group, G1 C G an independent subset, g E (G1), and e E G1, then 

we denote by be(g, G1) E [0 ,p -  1] the e-coordinate of - g  with respect to G1, 

that is, 

g = -  Z be(g, al)e 
eEG1 

To consider negative coordinates will ease the formulation of several results in 

the sequel. 

~-Yom the definition of half-factorial sets it follows that a set Go C G is 

half-factorial if and only if Go U {0} is half-factorial. Independent sets are half- 

factorial and {0, g} is half-factorial for every g E G. 

A key result for the investigation of half-factorial subsets of finite abelian 

groups is the following characterization of half-factorial sets (cf. [33, 34, 36] and 
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cf. [6] for a proof in the terminology used in this article): Go C G is half-factorial 

if and only if 

l 
1 

(~C) E ord(gi) - 1 
i=1 

for each atom I-Ili=l gi E ,4(60). 

In this paper we will only investigate elementary p-groups. From now on, we 

therefore assume that  G is an elementary p-group. 

In this case, for each g E G \ {0}, we have ord(g) = p and it is a convenient 

simplification to state the condition (~;) for a set to be half-factorial as: l --- p 

for each atom I1 L i=1 gi E ,4(Go) \ {0}. 
Also, the following important assertion will be widely used in the sequel: if 

a is an integer, the set {g, ag} is half-factorial if and only if ag E {0, g}. In 

other words, a half-factorial set cannot contain two distinct non-zero collinear 

elements. This assertion is quite immediate by ($) but can also be proved using 

Proposition 2.1.1 below. 

For any given Go C G, we can determine some independent set Ho C G such 

that  (Go) ® (H0} = G. Then Go is half-factorial if and only if Go U Ho is half- 

factorial. Consequently, whenever it is convenient we will suppose that  a given 

half-factorial set Go c G generates G (cf. e.g. [10, Lemma 3.1]). 

In particular, if Go C G is half-factorial with maximal cardinality [Go[ = 

#(G), then 0 E Go and (Go) = G. Note that  this does not hold for arbitrary 

finite abelian groups: it is shown in [10, Corollary 6.5] that  it is not the case, 

among others, for groups of the form (Z/pkZ)  p+I for any k _> 4 and prime p. 

In the following propositions we recall some further results on half-factorial 

sets. 

PROPOSITION 2.1: Let G be an elementary p-group of rank r and {el, •. •, er } C 

G a basis. Further, let g = - ~ = 1  b~e~ with b~ E [0, p - 1] for each i E [1, r] be 

a non-zero element of G such that {g, e l , . . . ,  er} is half-factorial, then 
T 

(1) E i = I  bi ---- P -- 1, 

(2) i f  bl ~ O, then 
r 

E [ b l l b i ] p  --  p -  [b l l ]p .  
i--1 

For ease of notation, Proposition 2.1.2 is just formulated for the first coor- 

dinate but clearly applies (and will be applied) to any other one. The same 

remark applies to the forthcoming Proposition 2.2 and Lemma 3.3. 
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Proposition 2.1.1 was initially proved in [34, Lemma 1] (cf. also [35]) as an 
r b~ Propo- application of Equation ($) to the minimal zero-sum sequence g l-L=1 ei • 

sition 2.1.2 follows by exchanging the role of g and ej using a change of basis 

formula (see for instance Proposition 2.2.2). 

It is important to note that the equalities in Proposition 2.1 (and more gen- 

erally throughout this paper) are equalities in Z and not just modulo p. In 

particular, it is necessary to fix a certain set of representatives modulo p, in 

our case [ 0 , p -  1]. This choice and the, somewhat artificial, representation of 

elements with negative coordinates, turn out to be an efficient way to express 

these and related results. 

PROPOSITION 2.2: Let G be an elementaryp-group of rank r and { e l , . . . ,  er} C 
r 

G a basis. Further, let g = -~i~=1 biei and h = - ~ = 1  b~ei with bi, b~ • 

[0, p - 1] for each i • [1, r] be non-zero elements of G such that {g, h, e l , . . . ,  er} 

is half-factoriaJ. 

(1) If  bl = b~ ¢ O, then g = h. 

(2) If  bl ¢ O, then 

Z c i  = p -  1 
i----1 

where Cl = [-bllb~]p • [O,p - 1] and ci = [clbi + b~]p • [O,p - 11 for each 

i • [2, r]. 

Proposition 2.2.2 was proved in [31, Proposition 4.2]. It follows by observing 
T that  h = - c l g -  ~i=2 ciei, and applying Proposition 2.1.1. Historically, Propo- 

sition 2.2.1 was first proved in [17, Lemma 1] but it can also be obtained as a 

consequence of Proposition 2.2.2, since bl = b~ 7~ 0 implies cl = p - 1 and thus 

c~ = 0 for each i • [2, r]. 

3 .  B a s i c  r e s u l t s  

As can be noticed from the preceding propositions we will frequently consider 

coordinates of some elements in various bases. Thus we introduce some notation 

concerning these coordinates. 

Definition 3.1: Let G be an elementary p-group. 

(1) If G1 C G is an independent set and g • (G1), then 

.(g, a l )  = I{e • al l  be(g, g 0}1 
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denotes the number of non-zero coordinates of g with respect to G1. More- 

over, if H1 C G1, then 

n(g, H1,G1) -~ [{e E Hll be(g, G1) ~ 0}[ 

denotes the number of non-zero coordinates of g among those of H1. 

(Clearly, n(g, a l ,  G1) = n(g, a l  ).) 

(2) If Go C G is a nonempty set ¢ {0}, then N(Go) denotes the maximal 

number of non-zero coordinates of the elements 9 E Go with respect to 

some independent set G1 C Go that generates (Go), i.e. 

N(G0) = max{n(g, G1)[ 9 E Go, G1 C Go a basis of (Go)}. 

It is obvious that 1 _< N(G0) _< r(G) for every Go C G. If however Go is 

half-factorial, then it follows by Proposition 2.1.1 that also 

N ( G o )  < p - 1. 

It might be interesting to note that in general not for every j E 

[1, m i n { r ( G ) , p -  1}] there exists some half-factorial set Go C G with N(G0) = j 

(cf. [31, Proposition 4.7]). However, we will only make use (in the proof of the 

theorems) of the fact, which can be obtained easily by Proposition 2.1, that for 

p = 5 there does not exist a half-factorial set Go C G with N(Go) = 3. 

Note that  our definitions for n(.) and N(.) differ from the ones in [17] and 

[10]. However the underlying idea in its application is essentially the same: By 

Proposition 2.2.1, it follows that if Go C G is half-factorial, G1 C Go is a basis, 

g, h E Go and e E G1, then be (g, G1) = be (h, G1) ¢ 0 implies g = h. Formulated 
in a negative way this means that, in a half-factorial set, two different elements 

cannot have a common non-zero coordinate. Since the total number of non- 

zero coordinates is bounded by r ( G ) ( p -  1) and clearly only one element has 

no non-zero coordinates, this yields an upper bound of 1 + r(G)(p - 1) for 

the cardinality of a half-factorial set in G. To improve this upper bound it is 

necessary to use further results on the coordinates of the elements of Go. Most 

of these results, clearly, depend on the fact that  the set Go is half-factorial. 

However, the following result holds in general, even for arbitrary vector spaces. 

Since we will frequently use it, we state it as a lemma and give a short proof of 

it. 

LEMMA 3.2: Let G be an elementary p-group, g, h E G and G1 C G be a basis. 
Suppose e' E Gx such that be,(g, G1) ~ 0 and be,(h, G1) ~ O. Then the set 
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c i  = (G~ \ {e ' } )  u {9}  is ~ basis and  

n(h,G~) _> n(h, G1) + n(g, G1) - 2u + 1 

with u = t{e • Gll b~(g, G1) ~ 0 and b~(h, a l )  ¢ 0}1. 

Proof: Since be, (g, G1) ~ 0, obviously G~ is a basis. If we let 

c 9 = [-be,(g, G1)-~b¢(h,  G1)]p and ce = [cgb~(g, G1)+  b~(h, G1)]p 

for each e • G~ \ {g}, then a change of basis formula yields 

h = -  E Cee. 
eea~ 

We have cg ~ 0. For e • G~ \ {g} it follows that  if be(g, G1) ~ 0 and be(h, G1) = 

0, then ce ¢ 0, and the same is true if be (h, G1) ~ 0 and be(g, G1) = 0. | 

The following two results will play a key rote in the remainder of this paper. 

As already mentioned, the main idea to obtain upper bounds for the cardinality 

of half-factorial sets in elementary p-groups, which was initially applied in [17], is 

to exploit the fact that  for two different elements no two non-zero coordinates are 

equal. In the following lemma we obtain a further condition for the coordinates 

of different elements in a half-factorial set. 

LEMMA 3.3: Let G be an elementaryp-group of rank r and G1 = { e l , . . . ,  er} C 
r r G a basis. Further, let g = - ~i=1 biei and h = - ~-~i=1 b~ei • G \ {0} with 

bi, b~ • [0,p - 1] for each i • [1,r] and Go = {g,h, e l , . . . , e~} .  I f  Go is half- 

factorial and b~ = [2blip, then a t /eas t  one of the following statements holds: 

(i) bl = bl = 0, 

(ii) h = 2 g -  ey for s o m e j  • [t,r] and ,(g, G1) _< 2, 

(iii) h = 2g - ej for some j • [1, r] and bj = O. 

Proof: If p = 2, then the lemma is clearly true. Therefore we assume p ~ 2. 

Suppose Go is half-factorial and b~ = [2blip. If bl = 0, then nothing needs to 

be proved. Thus suppose bl ¢ 0. 
r By Proposition 2.2.2, we have ~i=1 ci = p - 1 with 

Cl = [ - b i l b ~ ] p  = [ - 2 ] p  = p - 2 and  c~ = [Clb~ + b~lp --  [ -2b~ + b~]; 

for e a c h i  E [2,r]. Thus we have cj = 1 for s o m e j  E [2,r] and ci = 0 for 

each i E [ 2 , r ] \ { j } .  Without restriction let j = 2. For i e [3,r] we have 
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= ~i=1 bi [-2bi + b~]p 0 and thus b~ - 2b~ mod p. Since r r , = ~ i = l b i  = P -  1, it 
follows that b~ - 2b2 + 1 mod p. Thus we have h = 2g - e2. It remains to show 

that n(g, G1) _< 2 or b2 = 0. 

Assume b2 # 0. Since bi = 0 implies b~ = 0 for i E [1, r] \ {2}, it follows that 

Go is half-factorial if and only if Go \ {ei[ i E [1, r] and bi = 0} is half-factorial. 

Thus we may assume without restriction that bi # 0 for each i E [1,r], an 

assumption which implies n(g, G1) = r. 

We use again Proposition 2.2.2, now applied to the second coordinate, and 
"F ! _ -  

o b t a i n  ~i=1 ci = P - 1 with c~ = [-b~Xb~]p [ -2  - b21]p and 

c' i = [c'2bi + b~]p = [ ( -2  - b;1)bi + 2bilp = [-b2'bi]p 

for each i • [1,r] \ {2}. Note that [-b2ibi]p = p - [b21bi]p and by Proposition 

2.1.2, p -  [b;1]p = ~i~=1 [b21bi]p • Thus we have 

p - l = [ - 2 - b ; 1 ] p +  ~ [-b~lbi]p 
i=1,i~62 

= [ - 2 - b 2 1 ] p + ( r - 1 ) p -  ~ [b;lbi]p 
i----1,i:~2 

= [ -2  - b~l]p + (r - 1)p - (p - [b21]v - 1) > (r - 2)p. 

This implies n(g, G1) = r _< 2, which finishes the proof. | 

PROPOSITION 3.4: Let G be an elementary p-group of rank r and Go C G a 
half-factorial, generating set with N(Go) = s > 3. FUrther, let G1 C Go be a 

basis, Hi C G1 a n d G j  = {g E Go] n(g, G1) = j }  for each j E [2, s]. Then 
• s G Go \ {0} is equal to the disjoint union Ul=l I and 

(1) for each j E [3, s], 

E n(g, H1,G1) + E n(g, H1,G, )  < t r i l l ( P -  1), 
gEGo g E G  i 

(2) for each j E [3, s], 
$ 

E l[Gz[ + j[Gj[ <_ r ( p -  1), 
/ - - - - 1  , 

(3) the following inequality holds: 

51Go [ - 3]G2[ < r(p - 1) + 4r + 5. 

Proof: Since p -  1 > N(Go) > 3, we may assume p > 5 (see the discussion after 
Definition 3.1). 
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By the definitions of N(Go) and of Gj for j E [2, s], in order to prove Go\{0} = 

0z~lGt,  it suffices to observe that  if n(g, G1) = 1 for g E Go, then g E G1, as 

stated in Section 2. 

(1) By definition of n(.) we have 

E E n(g '{e} 'G1) : E n(g, H1,G1) 
eEH1 gEG ~ gEG ~ 

for every G ~ C G. Thus it suffices to prove the statement for IHll = 1. Let 

H1 = {e}. 
We define G~) to be the subset of Go composed of the elements g such that 

" 8  ! be(g, G1) ~ 0 and let G~ = Gl F1G~ for each I E [1, s]. Notice that  G~ = UI=IG t. 

Let us consider the two maps/~ and "~ from G~ to [ 1 , p -  1] defined by/~(g) = 

be (g, G1 ) and "y(g) = [2be (g, G1)]p, respectively. 

By Proposition 2.2.1 we have that b~(g, G1) = be(h, Gx) for g,h E G~o if and 

only if g = h, i.e., /~ is injective and thus ~/is injective as well. Moreover, if 

g E G} for some j _> 3, then be(h, G1) = [2be(g, G1)]p implies h = 2g - e' for 

some e' E G1 such that be,(g, G1) = 0 (indeed, this follows from Lemma 3.3 

in which, by our assumptions, only case (iii) can happen): This, in particular, 

implies h E G~+ 1 • Therefore we have 

Z(G~,) n s,(uLy~) c Z(uLj+la'z), 

which implies 

8 t _ -I~(u~=j+lG~)l. p -- 1 > I~(G'o) U "7(Ul=jGl) I > I/~(G'o)l + 17(U~=jG'l)l s , 

Since the maps ~ and ? are injective and the unions are disjoint, the right-hand 

side in this inequality is exactly IG~] + IG~]. But, using 

{1 if be(g, a~) # 0, 
n(g,{e},G1)= 0 otherwise, 

we observe that  

IG'ol= ~ , (g,(e},al)  = E ,(g,(e},al)  
gEG' o gEGo 

and, for any j E [3, s], 

IG~l = E "(g, {~},V~) = E "(g, (~},G1). 
gEG'j gEGj 
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Z n(g,{e},Gx)+ Z n (g , {e} ,G1)<p- l ,  
9EGo gcGj 

and the result follows. 
(2) We note that by definition n(g, G1) = j for every g E Gj and j e [1,s], 

and moreover Go C {0} U (@t~lGt). Thus the statement follows immediately by 

(1) with H1 = G1. 
(3) By (2) with j = 3 we obtain (setting Gl = 0 for l > s) 

8 

tG11 + 21G~I +¢G3]  + 41G41 + ~ l I G ~ l  _< r(p - 1) 
1=5 

and with j = 4 we obtain 

$ 

IGll + :IG~i + 31G3] + stG4] + ~ t l e ~ l  < r(p - 1). 
/----5 

Adding 5/7 times the first and 2/7 times the second inequality then yields 

s 

IGll + 21G21 + ~(IG3I + IGaL) + ~_,lIG~l < r ( p -  1). 
/=5 

Noting that IGot < 1 + ~ = 1  IGz[, we finally obtain 

8 

5lGoJ - 3IG2I _< 5 + 5IGll + 2IG=[ + 5(IGai + tG4t) + ~-'~ 5tGzJ 
/=1 

( ± ) _ < 5 + 4 r +  IG11+21G21+ (IGzI + IG41) + llG~ 
l=5 

< 5 + 4r + r (p-1) ,  l 

Remark 3.5: In the proof of Proposition 3.4.3, by considering the inequalities 
obtained in (2), 35/50 times the one for j = 3, 14/50 times the one for j = 4, 
and 1/50 times the one for j = 5, one could improve this result to 

51 31 G 41 51 
]-61c01 - ]-61 21 < r(p - 1) + ~-~r + ~-~. 

However, this improvement would not affect our main results, not even the lower 

bound for co(p, r) that we obtain. Thus we favoured the shorter proof and in 
particular the nicer constants. 
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4. P r e p a r a t o r y  r e su l t s  

In this section we investigate half-factorial sets Go C G with N(Go) <_ 2, 

N(G0) = 3 and N(Go) >_ 4, respectively. 

In the following proposition we describe the structure of half-factorial sets 

Go C G with N (Go) < 2. It is a reformulation of known results, in a way suitable 

for our application (cf. in particular [34, Lemma 1], [17, Proof of Theorem 8], 

[31, Proof of Theorem 3.1]). For the sake of completeness, we provide a proof. 

PROPOSITION 4.1: Let G be an elementary p-group of rank r, Go C G and 

G1 C Go a basis of G. 

(1) Go is half-factorial with N(G0) = 1 if  and only//:Go C {0} U G1. 

(2) Go is half-factorial with N(Go) _< 2 ff  and only if 

lr/2J 
Go c U {je2i-1 + ( p + l  - j ) e u i [ j  E [1,p]} u {e~,0}, 

i=1 

where G1 -- {e l , . . . , e r } .  

Proof: (1) The set on the right-hand side is half-factorial: This follows for 

instance from Equation ($), since the set of atoms of Go = {0} U G1 is given 

by ,4(Go) = {eP[ i E [1,r]} U {0} (or simply because independent sets are 

half-factorial in arbitrary abelian groups, cf. the discussion in Section 2). By 

definition of n(.) it follows that N(Go) = 1 and the 'if '-part follows. The 'only 

if'-part follows since a half-factorial set cannot contain two distinct non-zero 

collinear elements. 

(2) That  the set on the right-hand side is half-factorial is proved in [17, Proof 

of Theorem 8], which clearly implies the 'if'-part. 

We now prove the 'only if'-part. Let Go C G be half-factorial with G1 C Go 

and N(Go) = 2. By (1) it suffices to consider N(Go) = 2. Let g E Go with 

n(g, G1) = 2. Such an element exists since otherwise it would follow that Go C 

{0} U G1 and therefore N(G0) = 1. 

Let {el,e2} C G1 such that n(g, {el,e2},G1) = 2, i.e. 

g = -b le l  - b2e2 with bl,b2 E [ 1 , p -  1]. 

By Proposition 2.1.1 we have that bl + b~ = p - 1 ,  thus there exist some j E [2, p -  

1] such that g = - ( p - j ) e l  - (j - 1)e2 -- jel  + ( p + l  - j ) e2 .  It remains to prove 

that i fh  E Go\{el ,e2} with be,(h, G1) ~ 0 for some i E [1, 2], then n(h, G1) = 2 

a n d h = - b ~ e l -  ' ' ' b2e2 with 51,52 E [ 1 , p -  1]. Let h E Go \ {el,e2} and suppose, 
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without loss of generality, that  be1 (h, G1) ~ 0. As above, n(h, G1) > 1 and thus 

n(h, G1) = 2, thus h = -b]el -b}e~j with j E [2,r] and b],b~j e [ 1 , p -  1]. We set 

G] = (G1 \ {el}) U {g} and obtain by Lemma 3.2 that  

n(h,G])  >_ 5 - 21{e e Gll be(g, G1) ~ 0 and be(h, G1) ~ 0}1. 

Since n(h,G]) < N(Go) = 2, we obtain 

I{e e a~l be(g, G1) ~ 0 and be(h, G1) ~ 0}1 > 1 

and the statement follows. II 

Note that this proposition describes completely the structure of half-factorial 

sets of elementary 2- and 3-groups, since N(G0) < p - 1 (cf. the discussion 

following Definition 3.1). In particular, it already proves Theorem 1.1 and 

Theorem 1.2 for elementary 2- and 3-groups. 

From Proposition 4.1, it also follows that #(G) _> 1 + rp/2 if r is even and 

#(G) _> 2 + (r - 1)p/2 if r is odd, since the sets on the right-hand side of the 

formula in (2) have these cardinalities - -  notice that in (2), e~ belongs to the 

union 
Lr/2J 

U {je2i-1 + (p + 1 - j)e2il j e [1,p]} 
i= l  

if and only if r is even. 

Finally, Proposition 4.1 implies the following corollary. Note that  the condi- 

tion on the set Go to be generating, which is made in this and several of the 

following statements, is of purely technical nature. Obviously, the result can be 

extended to arbitrary half-factorial sets. 

COROLLARY 4.2: Let G be an elementary p-group of rank r and Go C G a 
half-factorial, generating set with N(Go) _< 2. Then, 

1 -t- rp/2 if r is even, 
laol < 2 + (r - 1)p/2 i fr  is odd. 

In particular, if r(G) = 1, then p(G) = 2 and if r(G) = 2, then p(G) = p + 1 

(cf. e.g. [34, 35, 17]). 

Next we investigate half-factorial sets Go c G with N(G0) = 3. First, in 

Lemma 4.3, we treat the case r(G) = 3. In Corollary 4.5 we will generalize this 

result to elementary p-groups of arbitrary rank. 
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LEMMA 4.3: Let G be an elementary p-group of rank 3 and Go C G a half- 

factorial, generating set with N(G0) = 3. Then, 

[Go[ _< 3 + 5p/6. 

Proof." Let G1 = {el,e2,e3} C Go be a basis and g e Go with n(g, G1) = 3, 

i.e. g = -ble l  - b2e2 - b3e3 E Go with bi E [ 1 , p -  1] for each i E [1,3]. By 

Proposition 2.1.1, we have bl + b2 + b3 = p - 1. Further, let 

G 2 = { g ' e G o [ n ( g ' , G 1 ) = 2 }  and G 3 = { g ' • G o [ n ( g ' , G 1 ) = 3 } .  

Obviously, the sets G2 and G3 depend on the choice of the basis G1. We will 

assert that for a suitable basis (in Go) the subset of elements with 3 non-zero 

coordinates will not be too small relative to Go. Having this at hand we will 

apply Proposition 3.4 and obtain the upper bound for [Go[. 
Let G~ 1) = {g' • G2[ be1 (g', G1) ~ 0} and assume without restriction that  

IG~I~I _> 21G21/3. 

Further, let G~ denote the basis {g, e2, e3}. We denote 

G ~ = { g ' e G o [ n ( g ' , G ~ ) = 2 }  and G ~ = { g ' • G o [ n ( g ' , G ~ ) = 3 } .  

We assert that  
IG~I _> IG~ 1)] - 1. 

Assume for a moment that this assertion is true and let us conclude the proof. 

By definition IG2 l+ Ia31 = I a ; l +  Iah l _ Iaol - IG1 ] - 1 = IGo] - 4 (with equality 
if and only if 0 • Go) and thus, by the assertion, 

[a;I > IG~I)[- 1 > 21G2-----~1 - 1 > 2 ( I a ° l -  I G a l - 4 )  _ 1. 
- - 3 - 3 

This implies 5 max{lG31, l a~l} >__ 31G~l +21631 _> 21Go l -  1 1 .  Without restriction 

suppose [G31 _> (2JGo[ - 11)/5. By Proposition 3.4.2 (applied with j = 3) we 

have 

3 ( p -  1) _> ]G1] +21G21 + 61G31 

and therefore, since IGll = 3 and IG21 >__ IGol - 4 - IG3J, 

3 ( p -  I) >_ 2]Gol +41G3] -5>_ 2]GoI + 4 ( 2 ] G ° ~ - 1 1 )  - 5. 

This gives 

laol < (5p + 18)/6, 
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which is the desired bound. 

Let us now prove the assertion that ]G~I > IG~I)I- 1. It is trivial if G~ 1) = 0. 

Therefore we assume G~ 1) # 0 and consider h • G~ 1). Then h = -ale1 - ajej 

with j • [2,3], al ,a  s • [ 1 , p -  1] and al + a s = p -  1. Let k • [2, 3] such that 

{j, k} = [2, 31. We may compute 

h = [alb11]pg -~- [a lb l l bk ]pek  -4- [ a l b l l b j  -- a j l pe j ,  

from which it is clear that  bg (h, G~) # 0 and be~ (h, G~ ) # O. 
We show that bCj (h, G~) = 0 if and only if aj = [-b~-lbj(1 + b-~lbj)-l]p. First 

note that this expression for aj is well-defined, since bl # 0 and 0 < bl + by < p. 

Since al + aj = p - 1 and thus al = [ -1  - as]v, we can solve the equation 

[-b l la lb j  + aj] v = 0 with respect to a s and obtain the unique solution 

aj = [-b~lbj(1 + b~lbj)-l]p, 

and we are done. 

Therefore we have 

G~ 2) = {g' • G~I) I be,(g',G1) ¢ [-bllbi(X-~-bllbi)-l]p for each i • [2,3]} C G~. 

Since [-b~-lbi(1 + b11b~)-1]p # 0 for each i • [2,3], it follows by Proposition 

2.2.1 that there exists at most one element gi • Go with 

be, (gi, Go) = [-b~-lbi(1 + b11bi)-l]p 

for each i • [2,3]. This implies IG~2) I > IG~x) I - 2. 

Using for instance Lemma 3.2, we observe that  n(el,G~) = 3 and thus el • 

G~. Since el ¢ G2, we infer 

IG~I ~ IG~2)I + 1 > Ie~) I - 1, 

which proves the assertion and finishes the proof of the lemma. | 

We now investigate the case of arbitrary rank. We start with a structural 

result. 

PROPOSITION 4.4: Let G be an etementaryp-group and Go C G a hail-factorial, 

generating set with N(Go) = 3. Then there exist three subgroups G', G" and H 

of G satisfying G = G ~ • G" @ H and r(G') = 3, such that 

- 1  
Go c (G' ~ G " ) U H  and JGo \ (G'UH)I <_ r ( G " ) P ~  
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Proo~ Since p - 1 _> N(Go) = 3, we may assume p _> 5 and in particular p 

odd. 

Let G1 C Go be a basis and g E Go such that  n(g, G1) = 3. Further, let 

H1 C G1 with IH1] = 3 and n(g, H1,G1) = 3. In other words, H1 is the subset 

of those basis elements for which the coordinates of g are non-zero. We set 

G' = (H1) and observe immediately that  r(G') = 3. 

We define/-/2 C G1 \ H1 as the set of those e E G1 \/-/1 for which there exists 

some h' E Go with n(h',H1,G1) ~ 0 and n(h',{e},G1) ~ O. We set 

G" = (H2) and H = (G1 \ (Hi U H2)) 

so that  G = G' • G" ® H. 

If/-/2 = 0, then Go C G' U H and the result follows. Thus we assume that  

H2¢0. 
Let e E H2 and h E Go \ {e} with n(h,{e},G1) • O. We assert that  

n(h, H1, G1) = 2. 

First we consider an element h' E Go \ {e} with 

n(h',H1,G1)¢O and n(h',{e},G1)~O. 

By definition of/-/2, such an element exists. We need to show that  n (h', H1, G1) 

= 2. Indeed, assume to the contrary n(h',H1,G1) = 1 and let e' denote the 

element in H1 for which h' (and clearly g) has a non-zero coordinate. We apply 

Lemma 3.2 and obtain, with G~ = (G1 \ {e'}) U {g}, 

n(h',G~) > n(h',G1) + n(g, G1) - 2 + 1 > 4, 

a contradiction to N(G0) = 3. Consequently, n(h', H1,G1) = 2, as announced. 

Consider now an arbitrary h E Go \ {e} with n(h, {e}, G1) ¢ 0. Since Go is half- 

factorial, we have n(h, G1) > 1 (otherwise h would be collinear to e). Again by 

Lemma 3.2 (with the basis (G1 \ {e}) t2 {h'}), we get that  e cannot be the only 

basis element for which both h and h' have a non-zero coordinate. Since all 

basis elements except e, for which h' has a non-zero coordinate are elements of 

H1, it follows that  there exists some element in H~ for which h has a non-zero 

coordinate, i.e. n(h, H1, G1) ~ 0. Thus the reasoning made for h ~ applies to h 

as well and we obtain n(h, H1,G1) = 2. 
This assertion implies that  if h C Go \ {e} with n(h, {e}, G1) ~ 0 for some 

e E/-/2, then n(h, G1) = 3 and h E G' o G " .  Thus it follows from the definition 

of H2 that  Go C (G' (~ G") U H and it remains to consider IGo \ (G' U H)I. 
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For e E / /2  let Ge = {h 6 G0l n(h,{e},G1) ¢ 0}. Since 

a o \ ( a ' U H ) =  U a~, 
eEH2 

it suffices to show that  la~l < (p- 1)/2 for each e E/-/2. Since n(h, G1) = 3 for 

every h E G~ \ {e}, we have by Proposition 3.4.1, for j = 3 and G3 as defined 

there, that  

1 +  2(IGe I - 1) = Z ,(g',{e},al)+ ~ °(g',{eI,al) <p-1.  
g'EGo g' 6G3 

The statement follows, since IGe I is an integer and p is odd. I 

Prom this proposition, we now derive a result on the cardinality of half- 

factorial sets with N(G0) = 3. 

COROLLARY 4.5: Let G be an elementary p-group of rank r and Go c G a 

half-factorial, generating set with N(Go) = 3. Then, 

Proof: Let us apply the previous proposition (we keep the same notations). 

We have 

IGol = IGo \ (G' u H)I + Iao n (G' u H)I 

lao \ (G' U H)I + IGo N G'I + [Go N HI -1 ,  

since G' N H = {0}. Proposition 4.4 therefore implies 

IGol ___ r(G") +IGoNG'I+IGoNHI-1 

where the second line follows by Lemma 4.3, since N(G0 n G') = 3. 

Now since, by (t), #(H) < 1 + r(H)p/2 and r(G") + r(H) = r - 3, we get 

I G 0 l < ( r - 3 )  + 3 + 5 P  r(G") < 3 +  - p. I 
- 6 2 - 5 5 

In the following proposition we investigate half-factorial sets with N(Go) >_ 4. 
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PROPOSITION 4.6: Let G be an elementary p-group of  rank r and Go C G a 

half-factoriaJ, generating set with N(Go) = s >_ 4. Then, 

r 3s 
]Gol _< l + ~ p -  1 0 + 2 s ( P -  1). 

Proof." We may assume 0 E Go (otherwise, we may consider the half-factorial 

set Go U {0}). Let G1 C Go be a basis and g E Go such that n(g, G1) = s and 

let H1 C G1 with IHll = s such that n(g, H1 ,Gt )  = s. Further, let 

G 2 = { g ' E G o ] n ( g ' , G 1 ) = 2 }  and e>2={g~EGo]n(g~,G1)_>2}.  

By Proposition 4.1.1 we have IG_>21 = IGol - I a l l  - 1 = IGol - (r + 1) and by 

Proposition 3.4.3 we have 

5lG>21 - 31G21 _< r(p - 2). 

We note that G2 C (H1) U (G1 \ H1). Otherwise, there exists some h E G2 

with n(h, H1, G1) = 1. Then by Lemma 3.2, considering the basis 

a i = (G1 \ {e'}) U {g} 

where e' 6 H1 is the element for which the coordinate of h is non-zero, we obtain 

n(h,G~l) >_ .(h, GI) + , (g ,  G1) - 2 + 1 = s + 1, 

which contradicts N(Go) = s. 
By (t) (or Proposition 3.4.1) we have 

r - - 8  
IG2 N (G1 \ H1)I _< 1 + - - ~ p -  (1+ ( r -  s)) = ( p -  2) 

and thus, using G2 C (H1) U (G1 \ H1), 

r - s 2). 
I a :  n (HI)I  > I V 2 1 -  - - y - ( P  - 

Therefore there exists some e 6 H1 such that for 

we have 

and therefore 

a~ = {h e a21 b~(h, al)  # 0} 

r - - 8  
IGel~ IG2n(H1)I~  2 ( I G 2 I - - - ~ - ( p - 2 ) )  

8 

>_ ;2 ,(5'<>2' o\r(P- 2) r (p- 2)j 
1 G e l  

_ 1 0 i G > _ 2 i  - ( 5 r  - 3 s ) ( p  - 2 )  

3s 
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Let G~ = (G1 \ {e}) [..J {g}. We set 

G~ = {g' • Gol n(g',G~) = 2} and G~2 = {g' 6 Gol n(g',G~) >_ 2}. 

Since, by Lemma 3.2, n(e,G~) = s and n(h,G~) _> s - 1 for each h E Ge,  we 

have 

IG~.21- IG~I _> IGel + t 

and again by Proposition 3.4 

5[G~2[ - 3[G~l < r(p - 2). 

Since IG~2 [ = [G>2I, the three last inequalities give 

r(p - 2) > 2[G~2l + 3(IG~el - IG~[) 

___ 21G>_21 + 3(IGel + 1) 

> 2[G_>2[ + 10[G_>2[ - ( 5 r -  3 s ) ( p -  2) + 3  
S 

: (2 + ~-~)IG>2[ + 3 +  ( 3 s - 5 r ~ ( p _  2). 
- -  \ S / 

This implies 

and, finally, 

3 8  

[G>_2[< 2 ( P - 2 )  1 0 + 2 s ( P - 1 )  

r 3s 
I G o [ < ] G > 3 ] + r + l < l + ~ p  1 0 + 2 s ( P - 1 ) .  

R e m a r k  4.7: Let all notations be as in Proposition 4.6. It is immediate from 

the proof of the proposition that  n(g', G~) e {s - 1, s} for every g' E Ge. Thus 
we could apply Proposition 3.4.2 with j = s - 1 and j = s to obtain another 
bound for IGol, namely 

3s 2 - 7s r 

I G o I < l + ~ p  2 2 s - 4 - 2 ( P - 2 ) "  

This bound is better for s > 7, but for s = 4 it is not sufficiently good for our 

purpose, namely the proofs of our main results. 

Since the alternative bound would not improve our main results, not even 

the lower bound for co(p, r) that we obtain, and since we believe that  even the 

alternative bound, for large s, is far from best possible, we favoured the shorter 

argument. 

We are now able to deduce the needed corollary. 
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COROLLARY 4.8: Let G be an elementary p-group of rank r and Go C G a 

half-factorial, generating set with N(Go) >_ 4. Then, 

5 r 2 

Proo~ If N(Go) = s _> 4, then Proposition 4.6 gives 

and the result follows. | 

5. Proofs  of the  main  results  

In this section we give the proofs of our two main results. 

Proof of Theorem 1.1: For even r the statement was proved in [17, Theorem 

8]. Thus suppose r is odd. It is known (this is (~) and cf. also the discussion 

following Proposition 4.1) that #(G) > 2 + (r - 1)p/2, thus it suffices to prove 

r - 1  
< 2 + - -y-p .  

By Proposition 4.1 the result holds for p _< 3 and we may therefore suppose 

p _ 5 .  

Let Go C G be half-factorial with cardinality #(G) and in particular (G0} = 

G. We distinguish 3 cases: 

1. N(Go) _< 2. We have IGol <_ 2 + (r - 1)p/2 by Corollary 4.2. 

2. N(Go) = 3. By Proposition 2.1, p cannot be equal to 5 (cf. the discussion 
following Definition 3.1) and for p _> 7 we have by Corollary 4.5 

( r  2) r - 1  
IGo l<3+  p < 2 + - - ~ p .  

3. N(Go) > 4. We have by Corollary 4.8 

5 ( r  2) r - 1  
[ G ° l - < 5 +  2 - 3  P < 2 + T P "  

Thus, in any case, we have IG01 < 2 + (r - 1)p/2. | 

Proof of Theorem 1.2: By Proposition 4.1 (and the discussion following it) the 

result holds for p < 3 and we suppose p _> 5. 
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Let Go C G half-factorial. Without restriction we assume that  Go is a gen- 

erating set. By Theorem 1.1 we have It(G) = 1 + rp /2  if r is even, respectively 

It(G) = 2 + (r - 1)p/2 if r is odd. We will establish a lower bound for #(G) - IGol 

in case N(Go) > 2. This will imply the results, since the structure of a half- 

factorial set with N(Go) _< 2 is known by Proposition 4.1. 

Suppose N(Go) > 2. If N(G0) = 3, then again by Corollary 4.5 

and thus #(G)  - IGol > p / 6  - 1, which clearly is positive for p _> 7 and again 

for p = 5 this case cannot occur. 

If N(Go) >_ 4, then again by Corollary 4.8 

5 r 2 

and consequently #(G) - IGol  > ( p -  2)/6. 

Thus if Go C G is half-factorial with IGol = #(G)  it follows that  N(Go) _< 2 

and the 'in particular'-statement follows by Proposition 4.1. 

Let c = 1/12. Note that  we may assume p _ 13, since IGol >_ It(G) - cp is 

equivalent to p(G) = IGol for p _< 11. By the argument given above we know 

that  if N(Go) > 2, then 

P 
It(V) - I a o l  > ~ - 1 > cp. 

Thus if IGol _> It(G) - cp, then N(G0) < 2 and the result follows again by 

Proposition 4.1. | 

Remark 5.1: The proof of Theorem 1.2 gives immediately that  the lower bound 

for Co could be improved to 1/6 - c (~ > 0 arbitrarily small), when we restrict 

our considerations to sufficiently large primes. Moreover, for groups of even 

rank we can further improve this constant to 2/3 - c. 

It might be interesting to note that,  seemingly, the most difficult problem 

towards further improvements on the lower bound we have for co, in general, 

is an improvement of Lemma 4.3. It follows immediately from the fact that  in 

general there exist half-factorial sets with N(Go) = 3, which can be seen easily 

at least for p _= 1 mod 3 (cf. [31, Lemma 4.9]), that  the statement of Theorem 

1.2 cannot hold for any c greater than or equal to 1. 
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